Counting for Slope

$$
\text { SLOPE }=\frac{\text { rise }}{\text { run }}=\frac{\text { vertical change }}{\text { horizontal change }}
$$

NAME \qquad
DATE: \qquad
\square units up units up and \qquad units to the right.

$$
\text { slope }=\frac{\square}{\square}
$$

To get from B to C, you move \qquad

$$
\text { slope }=\frac{\square}{\square}
$$

What relationship do you see between the two slopes?
For each example, shade the slope triangle. The triangle should always be drawn so that you move up or down and then to the right.

To get from L to M, you move \qquad units up and \qquad units to the right.

$$
\text { slope }=\frac{\square}{\square}
$$

To get from J to K , you move units up and \qquad units to the right.

$$
\text { slope }=\frac{\square}{\square}
$$

What relationship do you see between the two slopes?

To get from R to S, you move \qquad units down and \qquad units to the right.

$$
\text { slope }=\frac{\square}{\square}
$$

$$
\text { slope }=\frac{\square}{\square}
$$

To get from Q to T , you move \qquad units down and \qquad units to the right. .

What relationship do you see between the two slopes?

Determine the slope for each line on this page. Where necessary, draw the slope triangle. Then, write the slope as a fraction. Remember that when you move down, the numerator is negative.
Simplify the fraction, whenever possible.

Right: \qquad Right: \qquad slope $=$
Right: \qquad slope $=$

For some examples, you'll have to choose your own points and draw the triangle yourself.

Up/down: \qquad
Right:

Up/down: \qquad
Right: \qquad

Up/down:
Right: \qquad

Up/down: \qquad Up/down: \qquad
Right: \qquad slope $=$

