How Do They Fit? Determine the slope and y-intercept.

Puzzle:

Cut apart the puzzle pieces. On notebook paper, rewrite each equation in slope-intercept form. Match the equation puzzle piece with the piece that has the correct slope and *y*-intercept. You must solve *a minimum of ten* equations.

Edges:

Once the puzzle is complete, there will be three edges that have equations written in Standard Form and nine edges that have a slope and *y*-intercept. Write all 12 of these as equations in slope-intercept form. On graph paper, graph at least 10. Be sure to label each graph with the slope-intercept form equation written on the line.

3x - y = -5		$m = 3, y - \operatorname{int}\left(0, -\frac{\pi}{3}\right)$	m = 1, y-int: (0, 0)
NG /	$\frac{x - 4y = 40}{\left(\frac{\lambda}{2} - 0\right): \operatorname{uni} - \lambda' \tau = u}$	$m = \frac{2}{3}, y - int; (0, 2)$	$(0t - t_0) = ut_1 - x \cdot \frac{b}{t} = w$ $2x + 3y = 6$
m = 0, y-int: (0, -7)		7x - y = 2	2x - 3y = -18
5x - 4y = 9		5x - 3y = 7	$m = \frac{5}{3}, y - \text{int:} (0, 6)$
x + 3y = -6	$(4, -, 0)$:tni- $\gamma, 3^{-} = m$	$3x - 2x - 8$ $m = -\frac{3}{2}, y - int: (0,0)$ $m = \frac{3}{2}, y - int: (0,0)$	$\left(\frac{\frac{L}{9}}{0}\right): \operatorname{sur} - \frac{\lambda}{2} - = m$ $\int_{0}^{1} \frac{1}{2} \int_{0}^{1} \frac{1}{2} \int_$
6x - 2y = 16		m = 7, y-int: (0, -2)	$m = \frac{1}{4}, y - \operatorname{int}\left(0, -\frac{1}{4}\right)$
	$2x + iy = 0$ $(b - i0) = ui + i \sqrt{\frac{L}{2}} = ui$	$u = \frac{1}{2}, y - \tan(0, -2)$	0T = k + xg $4x - 3y = 9$
$m = \frac{3}{4}, y - int: (0, 3)$		m = 3, y-int: (0, -8)	m = 3, y-int: (0, 5)