How Do They Fit? Determine the slope and y-intercept.

Puzzle:

Cut apart the puzzle pieces. On notebook paper, rewrite each equation in slope-intercept form. Match the equation puzzle piece with the piece that has the correct slope and *y*-intercept. You must solve *a minimum of ten* equations.

Outside Edges:

Once the puzzle is complete, there will be three edges that have equations written in Standard Form and nine edges that have a slope and *y*-intercept. Write all 12 of these as equations in slope-intercept form. On graph paper, graph at least 10. Be sure to label each graph with the slope-intercept form equation written on the line. Do **NOT** graph all 10 equations on the same coordinate plane.

m = 1, y-int: $(0, 0)$	2x + 3y = 6	2x - 3y = -18	$m = \frac{\pi}{3}, \gamma - \operatorname{int}_{\epsilon}(0, 6)$	$m = -\frac{5}{4}, y - int: \left(0, \frac{5}{2}\right)$	$m = \frac{1}{4}, \gamma - \text{int}_{\pm} \left(0, -\frac{1}{4} \right)$	4x - 3y = 9	m = 3, y-int: $(0, 5)$
$m = 3, y - \operatorname{int}\left(0, -\frac{1}{3}\right)$	$(z'0) = uy - \lambda' \frac{\varepsilon}{z} = ut$ $x - 4y = 40$	7x - y = 2	5x - 3y = 7	$(0'0): \mu - \lambda' \frac{7}{8} - = \mu$	Lп	$(z-'0): xy - \lambda' \frac{S}{t} = w$ $2x + 7y = 8$	m = 3, y-int: $(0, -8)$
3x - y = -5	$\left(\frac{\ell}{9} - 0\right) : \text{aug} - \ell = m$ $6x + 4y = 15$	m = 0, y-int: $(0, -7)$	5x - 4y = 9	$m = -\frac{2}{3}$, $y = intr(0,2)$	6x - 2y = 16	$(x - y) = xu - x^{2} \frac{\ell}{\epsilon} = xu$ $6x + 4y = 0$	$m = \frac{3}{4}, \gamma - \text{Int:} (0, 3)$