1) Set up paper using the chart template below.
2) Students can work in pairs, but each person has their own paper to show work.
3) Give each pair a set of cards (or cut the set of cards if working at home.)
4) Match each numbered problem card with its simplified answer on the lettered cards. Then write the letter of each simplified answer next to the numbered card it matches.
5) For each solution card, classify the polynomial by degree and number of terms.

$\#$ (problem cards)	Letter (solution cards)	Classification
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		

\#1 Find the area of the rectangle shown below.	$\begin{aligned} & \# 2 \\ & \left(10 x^{2}+5\right)-\left(5 x^{2}+3 x-2\right) \end{aligned}$
\#3 $(2 x-1)\left(-2 x^{2}-3 x+4\right)$	\#4 Find the perimeter of a square with a side
\#5 $\left(2 x^{5}-5 x^{2}\right)+\left(3 x^{5}-x^{3}+2 x^{2}\right)$	\#6 $9 x^{2}+5-10 x^{2}-6+7 x$
\#7	\#8 $(4 x+2)^{2}$

\#9 Find the perimeter of a rectangle with	\#10 $\left(x^{3}+2 x+1\right)-\left(2 x^{2}-4\right)$
\#11 Find the area of a square with a side measuring $9 x-2$	\#12 $(x-2)\left(x^{2}+3 x-4\right)$
\#13 Find the perimeter of a triangle with sides	\#14 $\left(4 x^{4}-3 x^{2}+4\right)-\left(2 x^{4}-x^{2}\right)$
$7-3 x^{2}+4+2 x^{2}$	$\begin{aligned} & \text { \#16 } \\ & (2 x+1)(5 x-3) \end{aligned}$

A	B
$-4 x^{3}-4 x^{2}+11 x-4$	$x^{2}+8 x+15$
$5 x^{5}-x^{3}-3 x^{2}$	$x^{3}-2 x^{2}+2 x+5$
E	F
$28 x-12$	$3 x^{2}+6 x+4$
G	
$2 x^{4}-2 x^{2}+4$	$5 x^{2}-3 x+7$

I $x^{3}+x^{2}-10 x+8$	J $\begin{aligned} & \\ & \\ & \\ & 20 x+6\end{aligned}$
K	L
$20 x^{2}+35 x$	$10 x^{2}-x-3$
M	N
$16 x^{2}+16 x+4$	$81 x^{2}-36 x+4$
O	P
$-x^{2}+11$	$-x^{2}+7 x-1$

